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Figure 1: Examples of Epidermal Computing Devices for a) eyes-free touch input [230], b) wireless communication through
aesthetic on-skin tattoos [97], c¢) displaying notifications through ultr-thin displays [232], d) feel-through haptics [234], e)
sensing physiological signals [155] and f) skin stretchable large scale transistor array for on-skin computing [225]

ABSTRACT

Skin is a promising interaction medium and has been widely ex-
plored for mobile, and expressive interaction. Recent research in
HCI has seen the development of Epidermal Computing Devices:
ultra-thin and non-invasive devices which reside on the user’s skin,
offering intimate integration with the curved surfaces of the body,
while having physical and mechanical properties that are akin to
skin, expanding the horizon of on-body interaction. However, with
rapid technological advancements in multiple disciplines, we see
a need to synthesize the main open research questions and oppor-
tunities for the HCI community to advance future research in this
area. By systematically analyzing Epidermal Devices contributed
in the HCI community, physical sciences research and from our
experiences in designing and building Epidermal Devices, we iden-
tify opportunities and challenges for advancing research across five
themes. This multi-disciplinary synthesis enables multiple research
communities to facilitate progression towards more coordinated
endeavors for advancing Epidermal Computing.
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1 INTRODUCTION

The extraordinary properties of skin make it an appealing user
interface. First, the presence of mechanoreceptors that capture
nuanced tactile sensations afford dexterous tactile input techniques
and rich haptic output, which can be further enhanced using the
materiality of soft and deformable skin. Moreover, as skin is the
largest human organ, it offers a large real-estate for input and
output. It is always with us and easily accessible supporting direct,
subtle, and discreet interactions. This is applicable for a variety of
mobile activities, including walking, running, carrying shopping
bags, riding a bike, or driving a car. Lastly, skin is inherently multi-
modal. In addition to its haptic aspects and its function of visual
display, it can also act as a biological interface for sensing bio-
signals.

The HCI community has explored diverse technical approaches
for turning human skin into an interface Amongst others, these com-
prise optical [67], bio-acoustic [69, 149], magnetic [26, 75], radar-
based [224] and ultrasound imaging techniques [145]. A recent
stream of work, at the intersection of material science, biomedical
engineering, and HCI, has created the foundations for Epidermal
Computing — a new form of wearable computing platform that is
characterized by ultra-thin devices which are noninvasive, offer
intimate integration with the curved surfaces of the body and have
physical and mechanical properties that are akin to skin.

These Epidermal Devices, often also referred to as Electronic
Skin or Epidermal Electronic Systems (EES), open up a wide range
of possibilities by augmenting the human skin with electronic func-
tionality. They enable sensing of tactile input [157, 230], highly-
articulated body movements [103, 260], and physiological signals [15,
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47, 91, 264]. They provide haptic output [234, 249, 252] or augment
the body with visual displays [97, 232]. Moreover, Epidermal De-
vices enable non-invasive testing of contagious viruses such as
COVID-19 [209] and offer non-invasive drug delivery [221]. Last
but not least, they can harvest energy from bio-mechanical activities
like walking [242] or even human sweat [88].

Prior work in HCI has synthesized challenges in related areas,
notably wearable computing [196], skin-based interaction [17, 132],
human-computer integration [148] and shape-changing displays [1].
Epidermal Computing Devices present orthogonal key challenges
and opportunities that focus on the characteristic technology, new
materials and fabrication of these devices, which offer unique op-
portunities for on-skin functionality and applications. The number
of publications on soft on-skin devices in major HCI venues has
been rapidly increasing in the past few years, forming a new field;
however, almost all work contributes research focused on an in-
dividual prototype. There is a need for going beyond individual
technical and empirical contributions and identifying a more over-
arching set of opportunities and challenges that can help direct
future research in the field.

While there are a few survey articles and state-of-the-art reports
for various types of Epidermal Devices that have been published in
other communities [10, 108, 178, 244], this work presents the first
multi-disciplinary analysis of Epidermal Devices contributed across
multiple research disciplines (HCI, Materials Science, Nanotech-
nology, Bio-medical, Electronics) and focuses on the HCI-specific
questions and research directions that other works have not re-
viewed. By comparing and contrasting research from prior work,
we identify challenges and opportunities across five major themes
that are central for the development of Epidermal Computing De-
vices from an HCI perspective: (1) Materials, (2) Fabrication, (3)
Devices and their functionality, (4) Technical and Empirical studies,
and (5) Applications and real-world deployments (Figure 3.

We envision this article will guide researchers and practition-
ers from various disciplines to: (1) understand the state-of-the-art
capabilities of Epidermal Devices and identify areas of opportu-
nity from an HCI perspective; (2) situate their work within the
broader Epidermal Computing research agenda and identify new
research directions for their research communities, (3) allow practi-
tioners in industry and government agencies to better understand
the field and potential applications for accelerating the real-world
deployment of Epidermal Devices.

2 WHAT IS EPIDERMAL COMPUTING

The vision for Epidermal Computing is to intimately couple sens-
ing, computation, and interaction to the outermost layer of the hu-
man body (the epidermis) by means of Epidermal Devices. These
devices are soft, of minimal thickness, highly stretchable and flex-
ible, to adapt to complex body geometries and ideally conform to
the relief of the skin’s surface. Furthermore, Epidermal Devices
are non-invasive and should be made of bio-compatible materi-
als. They leverage on perceptual, biological, social and emotional
properties associated with human skin, in order to support multi-
modal interactions, physiological sensing, health diagnostics and
treatment.
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One of the key properties that define Epidermal Interfaces is skin
conformality. This is a crucial property that defines how well a
device or interface adapts to the complex relief of the skin. Fig-
ure 2 shows SEM (scanning electron microscope) scans of devices
of various thickness levels and their skin-conformable property. Fig-
ure 2(a) shows the SEM scan of a skin replica without any overlay.
Figure 2(b) is the SEM scan when a thin layer of spray-on bandage
(~ 20 nm) is applied on the skin. As can be observed, the highly
conformable layer is unnoticeable in the scan. When a device of ~
100 ym is applied on to the skin (Fig. 2c), the device very well adapts
to the contours of the skin but fails to penetrate into the deepest
creases and pits. Reducing the thickness by ten times, to 10 um,
significantly improves the conformality, as shown in Figures 2(e)
and 2(f).

Skin-conformal contact has many advantages in various domains.
Firstly, from an ergonomics perspective, skin-conformal devices can
be very comfortable and minimally invasive, promoting long-term
use [104]. Secondly, a device that is highly skin-conformal mini-
mally attenuates our natural tactile perception capabilities. Tactile
cues can be transmitted through these devices to the underlying
mechanoreceptors, which enables us to feel natural tactile sensa-
tions despite the presence of these interfaces on the body [156].
Thirdly, many bio-signals such as EEG, ECG or EOG are captured
with skin-mounted sensing electrodes that need to be in close con-
tact with the skin for acquiring high-quality signals. Similarly, this
is a very attractive property for applications in sports and fitness
where devices need to be tightly coupled to the body for measuring
athletic performance [239].

The degree of skin conformality allows to broadly subdivide
Epidermal Computing Devices into two groups: (a) Skin stickers
are somewhat thicker (~ 100 ym-700 pm) and therefore can be
easily worn, removed from the body surface, and re-applied. A
few examples of such devices that have been presented in the HCI
literature are iSkin [230], Electrodermis [140], Springlets [64] and
Multi-Touch Skin [157]. (b) Skin-conformal devices are ultra-thin
(ranging between ~ 1um and 100 gm). This enables them to be
tightly coupled to the skin, in some cases even without any addi-
tional adhesives by van der Waals forces alone. They are extremely
stretchable, flexible, and adapt very well onto strongly curved and
deforming body geometries. Few examples of such devices in the
HClI literature are Skintillates [133], DuoSkin [97] SkinMarks [232],
Tacttoo [234] and Tip-Tap [101].

2.1 Research Themes and Analysis

The field of HCI has seen rapid growth in the development of Epider-
mal Devices in the past few years. Starting with iSkin [230] which
introduced Epidermal Devices in HCI and enabled touch input on
the body, the devices have become slimmer [97, 133] and adapted
to complex body geometries [232], have enabled high-resolution
touch sensing [157] and novel haptic sensations [64-66, 234], and
included monitoring of bio-signals [140, 155]. The physical sciences
research community has been investigating Epidermal Devices for
more than a decade longer than HCI. The majority of their work
focuses on creating and formulating new materials, advanced fab-
rication techniques, and developing sensors and actuators, which
typically involve using sophisticated lab equipment. The learnings
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Figure 2: SEM images of epidermal devices of different thickness, showing its effect on skin conformality, reproduced with
permission from [86]. Copyright 2013 Wiley-VCH and John Wiley & Sons - Books.

and research innovations from those communities have in parts
been taken up by the HCI community, which in turn has led to the
development of new interactive devices, along with more accessible
fabrication techniques.

To synthesize the opportunities and challenges, we performed a
literature analysis across multiple disciplines by analyzing research
articles published at top-tier journals and conferences which in-
clude: Nature (Nature, Nature Communications, Nature Electronics,
Nature Nanotechnology, Nature Materials), Science (Science, Sci-
ence Advances), Wiley (Advanced Materials, Advanced Functional
Materials, Advanced Healthcare Materials), American Chemical
Society (ACS Sensors, ACS Applied Material Interfaces, ACS Nano),
Royal Society of Chemistry and the ACM Digital Library for re-
search articles in HCI/Computer Science.

Our method of literature analysis is informed by prior work [57,
188]. We conducted a full-text search in the following online repos-
itories: ACM Digital Library, Nature, Science, Wiley, American
Chemical Society, Royal Society of Chemistry, using these key-
words: “Epidermal Devices; Epidermal Interfaces; Epidermal Elec-
tronics; E-Skin; E-Tattoos; Epidermal Electronic System". This re-
sulted in a total of ~4400 publications. From this large pool of
articles, the authors selected publications that have potential direct
relevance for HCI, by proposing a fabrication process, by demon-
strating functional devices, by proposing applications relevant for
HCI, or a combination thereof. Papers with abstracts that did not
match any of these three inclusion criteria were dismissed. Further-
more, publications other than main track conference papers and
journal articles were dismissed (such as work-in-progress, work-
shop publications, or demos).

This resulted in a total of ~250 that were retained for further
analysis. These articles were then analysed through an open-coding
scheme. In an initial analysis of a subset of publications, we identi-
fied five themes central for the opportunities and challenges that
were subsequently used for categorizing all publications:

o Functional Materials: We analyze the functional materials that
commonly are used for building Epidermal Devices across disci-
plines. Based on this, we identify opportunities and challenges

for sustainable materials, stretchable conductors, safety and han-
dling of materials.

o Fabrication and Design Workflows: By analyzing and understand-
ing the fabrication mechanisms and design workflows used for
realizing Epidermal Devices, we identify potential opportunities
and challenges for devising new techniques that better support
rapid prototyping, require only simple lab equipment and enable
easy fabrication of devices.

e Devices and their functionality: We compare and contrast the
devices across disciplines based on their functionality and the
interactions that are supported. By understanding and analyzing
several device types, we identify future device functionalities
that can be developed by the HCI community.

e Evaluation Methods and Strategies: We compare methods of
evaluating technical aspects, human factors and user interaction
of Epidermal Computing Devices across disciplines. We identify
the next steps with regard to fundamental empirical experiments
for understanding skin-specific interactions, social acceptability
and in-the-wild studies of Epidermal Computing.

e Applications and Real-World Deployments: By comparing and
contrasting the applications and deployments that have been
targeted, we identify opportunities for potential applications that
future Epidermal Devices can target.

In the following sections, we will discuss these thematic areas
in turn.

3 MATERIALS

Epidermal Devices are typically fabricated as a multi-material sand-
wich. Selection of materials is critical, as they need to comply
with the demanding mechanical requirements (notably, being soft,
stretchable, mechanically robust despite a very low diameter, and
adhering to the skin) and offer the required functional properties
for the embedded electronics. We will now discuss materials for sub-
strates and functional layers and identify opportunities for future
work.
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Figure 3: Opportunities and challenges for Epidermal Computing span aspects of materials, fabrication, functionality, evalu-

ation methods and applications.

3.1 Substrates

Substrates usually form the base material onto which functional
materials are coated for creating the device sandwich.

3.1.1  PDMS. PDMS (poly (dimethyl) siloxane) is one of the most
commonly used substrate materials for fabricating epidermal de-
vices. It is optically transparent (240 — 1100 nm wave length) [23, 144,
195], flexible [90, 235], highly stretchable and bio-compatible [62,
235]. It can be fabricated in a range of thicknesses between ~
10 —700um for Epidermal Devices, allowing for trading-off between
conformality and mechanical durability for a given application case.

PDMS offers additional advantages because of its low cost and
rapid prototyping capability. This makes PDMS not only widely
used in physical sciences research [36, 87, 104, 166], but it has
also been used in the HCI community to create epidermal touch
sensors [230], thermochromic displays [227] and for creating haptic
sensations using micro-fluidic channels [66].

3.1.2  Tattoo Decal Paper. Tattoo Decal or Temporary Tattoo pa-
per is another commonly used substrate material for fabricating
ultrathin Epidermal Devices. The main constituents of tattoos are
polymers, having low Young’s modulus [47, 142] and the overall
thickness is submicrometric [47]. These two peculiar characteris-
tics make it an ideal substrate material for obtaining conformal
adhesion to the skin [104]. Temporary Tattoo paper is composed
of ultrathin (<1ym) carrier film, water-soluble polyvinyl alcohol
(PVA) layer, and backing paper for ease of handling. Functional
layers can be easily created on the substrate through inkjet print-
ing [102, 135] or screen printing [133, 232]. Once the devices are
printed they can be transferred to the human skin through water
transfer: when water is applied to the temporary tattoo paper, the
carrier film separates from the paper leaving behind an ultrathin
layer composed of functional layers that easily adapt to the body
surface.

Temporary tattoo paper has been extensively used in physi-
cal sciences research for fabricating various devices such as skin-
conforming electrodes for electrophysiology [15, 47, 91, 135, 204],
emotion sensing [81], transistors and edible electronics [21], wire-
less communication [213], energy harvesting on skin [88] and for
organic indoor photovoltaics [169]. Temporary tattoo paper has also
been extensively used in the HCI community for creating various
devices such as touch sensors [133, 232], 2D touch matrices[97, 157],
battery-less 2D touch input [101], electro-tactile actuators [234],
physiological sensing [155], displays [97, 133, 232], and on-skin
PCBs [96].

3.1.3 Hydrogels. Hydrogels and ionogels are another promising
class of stretchable active materials, noteworthy because they closely
mimic the mechanical, chemical, and optical properties of biologi-
cal tissues [240]. Due to the advantages of their 3D structure, bio-
compatibility, and biodegradability, hydrogels have been used for a
wide variety of applications such as tissue engineering [129], and
highly stretchable printed electronics [253]. We are seeing first ex-
plorations of hydrogels in the HCI community for epidermal devices
which change their texture and stiffness through joule heating [95].

3.1.4  Substrate-Less or Water-Soluble Substrates. Depositing func-
tional materials directly onto the skin has been another way that
has been explored in physical sciences research. This is typically
done through a water-soluble substrate that dissolves during wet
transfer [228, 229].

3.1.5 Textile Patches. While e-textile research is a substantial re-
search area on its own with multiple research communities actively
exploring the field, a few research works in HCI have investigated
the use of e-textiles as on-skin interfaces.

This includes augmenting the skin by adhering soft textile patches [197,
198] as well as using weaving or machine embroidery for creating
patches with unique visuo-haptic properties [77, 89, 200].
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3.2 Functional Materials

3.2.1 Conductors. Epidermal Devices typically require one or more
conductive layers on a base substrate for performing a specific
function. Multiple approaches and materials have been explored
for coating conductive layers. The most commonly used functional
materials are:

e Metallic Conductors: Metallic conductors are one of the most
commonly used functional materials because of their high con-
ductivity and ease of processing. Silver and gold have been
used very commonly in the HCI community either in form of
screen-printing pastes [133, 232] or through thin films [97]. These
are also very commonly used materials in physical sciences re-
search [147, 228]. Metallic conductors in the form of Silver nano-
particles (AgNp) can also be deposited through ink-jet printing
methods [102]. Additionally, the are also used in the form of
nanowires and nanoparticles [72, 113].

o Intrinsically Stretchable Polymers: By comparison to metallic con-
ductors that have high Young’s modulus and hence are very brit-
tle, intrinsically stretchable polymers have attractive mechanical
properties such as high stretchability and deformability. A well-
studied conductive polymer is poly(3,4-ethylenedioxythiophene)
polystyrenesulfonate (PEDOT:PSS) [223]. It has been widely used
in physical sciences research community for creating Epider-
mal Devices which measure physiological signals such as EMG,
ECG and EEG [47, 126]. PEDOT:PSS has also been widely used
in the HCI community for creating stretchable interactive de-
vices [56, 233], pressure sensing foils [181] and epidermal de-
vices [157, 232, 234]. Physical sciences research has also explored
other stretchable polymers that offer superior deformability, such
as a compound material formed from the copolymerization of
poly(3-hexylthiophene) (P3HT) and polyethylene (PE) to obtain
(P3HT-PE) which offers up to 600% stretchability [150].

e Carbon Composites: Carbon and its composites like graphite,
graphene or activated charcoal have been successfully used for
creating Epidermal Devices [91, 111, 237]. Carbon composites
have received lesser attention in the HCI community, with only a
few works using them [230]. A key advantage is that they are low-
cost when compared to metallic conductors which have limited
reserves and are expensive. Some of the allotropes of carbon used
for fabrication purposes are graphite [180] and graphene [48].
Graphene has received wide attention because of its electrical con-
ductivity, mechanical properties [179] and the“thinnest” known
material [48] and as result has been used in realizing a number
of Epidermal Devices [76, 91, 122]. However, since graphene is
expensive [48], Graphite has been viewed as another alterna-
tive since it is a low-cost material, and offers the advantage of
bio-compatibility [27]. It has relatively low conductivity but is
also a popular choice to develop devices for biomedical applica-
tions [151].

e Nanowires, Nanomeshes, and Nano-Tubes: Nano particles typ-
ically in the form of nanowires (NWs), nano-meshes or nano-
tubes are another class of conductive materials that have been
extensively used [24, 243]. Multi-walled carbon nano-tubes have
also been recently introduced in HCI for realizing self-healing
interfaces [153, 177]. A key advantage of using nanomeshes is
that they can be realized in highly thin form factors while being
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stretchable and achieving superior conformal contact in compar-
ison to the planar polymeric substrates [92, 226]. However, a key
challenge for using nanomeshes and nanowires is the complex
fabrication process which often requires sophisticated equip-
ment.

Liquid Metals: Liquid metals are another class of conductors that
offer the benefits of high deformability [261]) and high electri-
cal conductivity [263]. Most prior research that utilized liquid
metals have employed gallium-based liquid metals to develop
epidermal devices that measure strain [167] and pressure [246].
They have also been used for creating capacitive touch and pres-
sure [4] sensors, resistive strain sensors [161, 168], for measuring
the angle of body joints [146] and for self-healing robots [141].
Liquid metals are also becoming increasingly popular in the HCI
community [187, 206, 207, 219], however with only very little
work investigating their use in Epidermal Devices [152].

3.2.2 Insulators and Dielectrics. Dielectrics and insulating materi-
als are necessary for creating devices that are composed of multi-
material layers and for insulating the device from its environment.

One common approach is to embed silicone elastomers as flat or
textured sheets [230, 243]. Another approach is to print fine layers
of dielectric materials [102, 232] or use multiple layers of the base
material as an insulating material.

3.2.3  Skin Adhesives. Skin adhesives are typically used to achieve
stronger adhesion of the device onto the skin. In some cases, the
high stretchability and very low thickness levels of the devices make
them bond to the skin through just van der Waals forces without
the need for external adhesives [104]. Other approaches typically in-
clude using commercially available solutions such as water-soluble
tape [85], commercial medical grade adhesives [140, 156], tattoo-
paper adhesive [97, 133, 232], acrylic [107], spray bandage [247],
and mastic [230].

3.3 Opportunities and Challenges

3.3.1 Sustainable Materials. Most materials used for Epidermal
Devices today are not sustainable. For instance, rare metals are
precious resources, most polymers do not biodegrade well, and
multi-material sandwiches are hard to recycle. Considering that
many devices are intended for one-time or short-term use, this is
an issue. Here, bio-based and bio-degradable materials can open up
new design space for epidermal devices, which is beginning to be
explored in Materials Science [111] and HCI [215]. By using fully
bio-degradable materials like gelatin, agar-agar, etc., one might
ultimately have Epidermal Devices that after use can be simply
composted.

3.3.2  Stretchable Conductors. A common challenge is the trade-off
that exists between highly conductive materials and their stretcha-
bility. Intrinsically stretchable conductors such as PEDOT:PSS are
stretchable, but typically suffer from a rather low conductivity. In
contrast, metallic conductors such as silver and gold possess high
conductance levels, however, they are brittle because of their high
Young’s modulus. A common strategy that has been employed in
the Materials science community is to have composite materials, e.g.
mixing liquid metals with silver particles to have highly stretchable
and conductive material composites [204]. However, a downside of
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this approach is that the formulation process is complex and the
composite material (e.g. liquid metals) might not be bio-compatible.
Another approach has been to use carbon in the form of nano-tubes
or nano-particles. These have been successfully demonstrated in
materials and HCI research works. However, they need meticulous
safety practices and a lab environment that might not be available
to a large community of makers, hobbyists, and practitioners. The
next step in this direction is to identify the suitable materials that
are easy to handle, are bio-compatible, stretchable, conductive, and
require minimal safety equipment and measures. Carbon-based
composites such as graphene and graphite show a promising direc-
tion in this regard [27, 48]. Another approach that has been used
is to fabricate multi-material layers composed of intrinsically con-
ductive polymer (e.g. PEDOT:PSS) and highly conductive metals
(e.g. Silver) so that the conductive polymer bridges the cracks that
occur in the metal layer [232].

3.3.3  Robust Ultra-Thin Materials. While tattoo-papers are ultra-
slim and conform to complex geometries, they suffer from limited
mechanical robustness. PDMS substrates on the other hand offer
can be fabricated to custom thickness levels offering and can be
more mechanical robust [156]. However, a key challenge that needs
to be addressed is to identify substrate materials and their compo-
sitions that are ultra-thin and stretchable while being mechanically
robust for a long duration. The same holds true for functional mate-
rials, and new explorations on functional carbon composites which
include graphene and its compounds in materials science offer a
promising direction in this regard [27, 48].

3.3.4 Technical and Safety Challenges for Handling Materials. Epi-
dermal Devices are present on the surface of the human body and
hence the functional materials that are used in the device should
not harm the human body. While there have been several explo-
rations of using sophisticated materials such as carbon-nanotubes
and liquid metals in the HCI literature, special consideration should
be taken with respect to the handling of these materials as they are
toxic and hence not compatible with the typical standards applied
in DIY processing. While safety standards and training do exist in
maker spaces and fab labs, these usually cover the safe handling
of machines, rather than the safe handling of materials. In the HCI
and maker communities, we see the need to increase the awareness
of potential hazards associated with materials and their processing
and recommend lab managers to establish formal safety standards
and dedicated training on material safety.

Another opportunity here is to identify, explore and investigate
completely safe-to-use and bio-compatible materials. For instance,
recent work in physical sciences research has demonstrated Epi-
dermal Devices using a pencil [237].

4 FABRICATION

The fabrication of Epidermal Devices not only involves identifying
the right set of methods, tools, and equipment for creating the multi-
material sandwich. It also involves challenges regarding the design
of layouts that are fabricable and comply with a user’s aesthetic
preferences.

Nittala, et al.

4.1 Fabrication Methods

4.1.1 Additive Methods. : Typical additive fabrication methods use
printing to pattern a sheet of substrate material with functional ink.
The arguably most commonly used approach is screen printing,
as it allows for convenient deposition of a very wide range of
materials with fine-tuned layer thicknesses and sufficiently good
resolution [78, 128, 257]. Due to the simplicity of fabrication, it has
been widely used in the HCI community [133, 232, 233]. However,
the approach is manual and requires creating a negative mask,
which makes it slower than alternative techniques.

A rapid approach for creating high-resolution patterns is inkjet
printing with functional inks. Physical sciences research typically
uses specialized industrial inkjet printers [47], which are very ex-
pensive and not easily accessible to hobbyists, practitioners, and
many HCI research labs. Recent research in HCI has contributed
inkjet printing and transfer approaches that are simple and can
be deployed with inexpensive commodity inkjet printers [30, 102].
In addition to these, Direct On-Skin Printing techniques involve
directly printing functional layers on the skin [59]. Recent research
in HCI has demonstrated this via pen-based devices which used
computational guides for inking [171] and through wearable plot-
ters that deposit ink based on the target design provided through a
design tool [34].

4.1.2  Subtractive Methods. : Typical subtractive methods involve
cutting a substrate or film of functional materials into a patterned
structure, by cutting out residual materials and leaving behind
the desired pattern on the substrate. Commonly used tools are
mechanical plotter cuts [97] or more advanced laser cutting such
as CO2 [136, 230] or UV laser micromachining [140].

4.1.3 Mixed Methods. : Another recently introduced technique
that uses a mix of additive and subtractive methods is the “cut-and-
paste" method [241] which involves using a mechanical plotter to
cut a specific design on a functional layer. The resultant functional
layer is then transferred onto the desired substrate. This technique
has been widely used in the Materials Science community with
variants of this approach being actively pursued [228]. A similar
approach uses a doctor blade to incrementally add functional layers
and use CNC milling to have the device in custom shape [227].
While the HCI community majorly focuses on fabrication tech-
niques that are easy, rapid, and can be performed with simple lab
equipment, the physical sciences research community employs var-
ious other approaches involving more complex procedures and
equipment such as electrospinning and vacuum depositions [147],
microfabrication, and thermal deposition techniques [71].

4.2 Computational Design and Optimization

Optimizing designs for targeting a specific functionality is a com-
mon practice in HCI and physical sciences research communities.
This involves optimizing electrical, physical and mechanical param-
eters, for instance for withstanding high strain [85], or for specific
electronic functionality such as the design of antennas for near-field
communication (NFC) [107].

One of the areas, where the HCI community has made rapid
advances in the use of computational design approaches for creating
personalized device designs that are optimized for a user’s body,



Next Steps in Epidermal Computing:

Opportunities and Challenges for Soft On-Skin Devices CHI 22, April 29-May 5, 2022, New Orleans, LA, USA
4 S0 @siver ™
f ® Gold :
107 : @ Copper |
1 I
1 @ Aluminum I
~ towards | !
< ' @ Liqui ; !
1 Liquid Gallium ® Platinum |
e 10 i . ) o !
£ \ Highly Conductive Metals chromium,’

%) e e e e e e e e e e e -
N
42\ e o e ———— ~
S 108 ! @ Graphene \|
= 1 1

o ! 1

> ! 1
g = -

) ) 1
] . -

o 104 I. Graphite Single-Walled Carbon Nano-Tubes H
(@] H !
K \_____Carhonand Compounds ___/
8 S e EEEEEEEEm——— N
= ( @ P3HT i

1 .

D 109 ! @ PEDOT:PSS H

w —_— i
\Intrinsically Stretchable Polymers ;
N 7’

10?

10 102 108 5 108 107 108 10°

104 10
Young's Modulus (KPa)

Figure 4: Most commonly used functional materials for epidermal devices, plotted against their respective electrical conduc-
tivity and Young’s modulus. A key opportunity for further research is to develop highly stretchable materials that possess
high electrical conductivity. Note: Young’s modulus is inversely proportional to stretchability.

Fabrication Methods Computational Design
° vy,
,ﬁ} Screen printing % Inkjet printing ﬂ Body Dimensions €,? Aesthetic Preferences
@ [133],[232], [234] @ [30],[102], [155] @ [140],[157] ® [140]
® (79} [n28], 1170] ® [1471.1136]. [210] %Anatomical Models
" Laser Cutting/Plotting !‘3“ On-Body Sketching ® [155]
|
® [97], [140], [230] ® [171] e -
N\,
® [82],[136], [141] ® [59]

E@ Material Models

.J Handcraft Workflows

——— o

4
]
1
1
i
i g Finite Element Methods
1
ﬁ ]
ooo  Mass Manufacturing i
1
\

,____________-

2% Widely Accessible Fabrication i

@ Physical Sciences @ HCI

Figure 5: Key research themes for Fabricating Epidermal Devices. A number of rapid and easy-to-perform fabrication meth-
ods have been explored in HCI. For each of the fabrication methods and computational design approaches, representative
research works from physical sciences and HCI research are shown. Next steps (highlighted) include the exploration of fab-
rication methods that leverage on traditional art and handcraft based workflows (e.g. henna tattoos) and exploration of mass
manufacturing techniques. For computational design techniques, advanced design tools incorporating material properties,
FEM analysis and widely accessible fabrication methods are the next crucial steps.



CHI 22, April 29-May 5, 2022, New Orleans, LA, USA

often using interactive graphical design tools. This includes, for
instance, a custom design tool for creating non-rectangular touch
sensor designs that fit on desired body parts [157], a design tool
for optimizing placement of electrodes based on anatomical models
for physiological sensing [154] or a design tool for controlling the
aesthetics of an Epidermal Device [140].

4.3 Aesthetics

Skin acts as a social display that signals traits related to personal-
ity, demographics, health, and social status [201]. Diverse forms
of aesthetic skin decoration, such as henna, make-up, jewellery
and tattoos, are wide-spread across cultures [41, 119, 162]. If worn
visibly, Epidermal Devices become an element of social display,
possibly even a fashion item. Therefore, their visual and material
aesthetics are central aspects for user adoption. Research in HCI
is considering this aspect increasingly, while it still remains rarely
addressed in materials science and physical sciences [58].

The current state of the art of fabrication incorporates aesthetics
in the following ways:

e Using Aesthetic Materials: Metallic materials such as gold or sil-
ver have been used for decorative purposes. Using these materials
for fabricating Epidermal Devices has enabled the devices to be
intrinsically attractive. A common way to use them is with tem-
porary tattoos [97] or through interactive cosmetics and make-up
materials [137, 216].

e ArtLayers: Art layers are one of the commonly used techniques to
add aesthetically pleasing graphics on top of the device, which is
typically hiding the device’s internal structure. This is often done
by using a dedicated layer of temporary tattoo [133, 137, 157, 232]
or molded onto the device[140].

o Aesthetic Functional Designs: A third approach does not hide

the device’s inner functional structure, but rather designs it to
be visually attractive. Electrical circuits or functional elements
of sensors are laid out in ornamental shapes that create a desired
visual aesthetics [230]. Prior work has achieved this through laser
cutting [230], CNC milling [227], a cutting plotter [97], and free
inking [171].
Recent work in HCI involves interactive computational tools
for creating aesthetic on-skin devices, such as creating devices
decorated with custom Voronoi patterns [140], or creating func-
tional and aesthetic epidermal circuits with computer-assisted
free-form sketching [171].

4.4 Opportunities and Challenges

4.4.1  Computational Fabrication. An important direction for fu-
ture work is to devise new computational design techniques that
assist the designer in customizing the design for individual users,
their body dimensions, and aesthetic preferences. Such techniques
will need to take into account anatomical models and operationalize
them for automatic optimization. This will be particularly important
for functionality that depends on a specific body location, such as
monitoring bio-signals. It remains a wide-open challenge of how to
capture and model a user’s aesthetic preferences, and operationalize
them for computer-assisted device designs. These steps will pave
the way for the rapid fabrication of epidermal devices that can be
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customized for form, shape, and aesthetics. Integrating computa-
tional design approaches with rapid prototyping techniques can
facilitate on-demand mass fabrication of devices. This can enable
more widespread and in-the-wild testing and evaluation of device
designs, which in turn can guide the computational design and
fabrication process. In addition to incorporating human-centered
properties such as body dimensions and anatomical models, future
tools should also explore integrating material models and finite ele-
ment analysis methods which allows designers to quickly identify,
predict, debug and custom-design the mechanical and electrical
properties of the device.

4.4.2  Fabricating for Large Body Areas. Current state-of-the-art
devices in HCI are usually designed for relatively small body areas
and regions. Scaling up the size of such devices to enable cover-
age over entire, large regions of the body can open new avenues
for physiological sensing. For instance, large-area, body-scale epi-
dermal devices for electromyography (EMG) can provide robust
recording capabilities across multiple muscle groups. Full-scalp or
full-forehead epidermal devices for electroencephalography (EEG)
can monitor electrical activity across the brain with high resolution.
However, there remain three major challenges in scaling current
epidermal devices in HCI for large-area electrophysiology: Firstly,
the current fabrication processes used in HCI limit the size of de-
vices to a few centimeters. Recent work in bio-medical engineering
has demonstrated tattoo-like electrodes for full-scalp EEG [229].
However, the microfabrication process on large thin-film wafers is
expensive and requires sophisticated equipment. Secondly, with-
out robust encapsulation, extended interconnects in direct contact
with the skin can capture unwanted but substantial biopotentials
that interfere with the signals collected by the measuring elec-
trodes [32, 70]. Finally, the geometrically non-developable nature
of human skin surfaces can cause wrinkles and high levels of strain
on the ultrathin electrodes, which can reduce the mechanical ro-
bustness or the conformality of the devices [138, 222].

4.4.3 Supporting High Resolution and Complex Aesthetic Patterns.
One of the key features of Epidermal Devices that the HCI com-
munity has focused on is their aesthetic appearance. While there
are custom design tools that enable designers to create 2D aes-
thetic patterns [140] and support free-form sketching with a pen
or a computer-controlled plotter [34, 171], most of these aesthetic
designs are limited to line-arts and simple designs. Future work
should investigate how more complex aesthetic patterns that are
common in traditional handcrafts can be incorporated.

4.4.4 Mass Fabrication Techniques. A big next step for advancing
Epidermal Computing for creating devices on a scale and for real-
world deployments is to explore and identify mass manufacturing
fabrication techniques. While some of the fabrication processes that
have been used for Epidermal Devices have been based on mass
manufacturing processes such as screen printing, they have not yet
been explored on a large scale. Other techniques are not compatible
or not suitable for producing devices on a large scale. An analogy
that can be compared to here is the growth of interactive textiles
that leverage standard practices of mass-manufacturing textiles
such as weaving, using of looms, and development of yarns [170].
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Figure 6: Current Epidermal devices are limited to a few centimeters size. The next step is to create skin-conformable epidermal
devices that cover large body areas. Representative research works from physical sciences and HCI research community are

shown.

4.4.5 On-Demand Fabrication Techniques. An approach orthog-
onal to mass-manufacturing is on-demand, on-place fabrication.
Epidermal devices that are personalized for a specific user might
be fabricated on-demand at a local pharmacy or even at the user’s
home. Recent work on fabricating epidermal devices with inexpen-
sive commodity desktop printers is making a pioneering step in
this direction [102, 155]; however, more work is required until we
can ultimately print an entire device on demand.

4.4.6 Promoting Inclusive Design. Previous interactive technolo-
gies (e.g. high-end smartphones) have raised concerns over a "Digi-
tal Divide", i.e. the technology is not equally accessible to everyone.
This can be amplified in the case of Epidermal devices. A simple
example is the creation of Epidermal Devices with high-end func-
tionality that currently requires sophisticated infrastructure which
is available to only a few labs in the world. Such exclusive means
for design and prototyping risk to exclude significant groups of
stakeholders from the power to co-define this novel technology, in
turn creating new divides that can have new and unexpected conse-
quences. Hence, we advocate for fabrication techniques, materials,
and infrastructure that are widely accessible and at a low-cost, to
reduce or mitigate new digital divides.

5 FUNCTIONALITY OF DEVICES

Epidermal Devices can serve multiple functions: they can act as
input devices through touch, pressure, and gestural input, provide

multi-sensory haptic feedback and visual output, monitor physio-
logical signals, and offer a promising platform for health monitoring
and diagnostics.

5.1 Input

5.1.1 Tactile Sensing. Touch and pressure contact has been one
of the most frequently investigated forms of input for Epidermal
Devices in both HCI and physical sciences research [3, 97, 133, 134,
165, 230, 245], realized using self-capacitance, mutual-capacitance,
or resistive sensing schemes. Prior work in HCI also includes a
high-resolution touch sensing matrices in non-rectangular form
factors [157]. While pressure sensing has been explored through a
few devices in HCI community [230, 249], higher-resolution pres-
sure sensing matrices need to be investigated.

5.1.2  Kinematic Sensing. Epidermal Devices that capture dynamic
motions of the human body can provide critical insights across a
broad range of applications, from clinical diagnostics (movement
disorders [124, 203], neurological disorders [82]) to athletic perfor-
mance monitoring [239, 256]. Sensing of body motions through
Epidermal devices has also been widely explored in the HCI com-
munity [133, 140, 155, 232]. In addition to precise movement track-
ing, kinematic sensing also allows for using body movements for
interactive application such as gesture detection [260]. Typically
epidermal kinematic sensing is deployed through strain sensors,
IMUs or through EMG approaches.
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5.1.3  Physiological Sensing. Physiological signals are readings or
measurements that are produced by the biophysical or biochemi-
cal processes that happen in the human body. Epidermal electro-
physiological sensors have been developed that measure the changes
in electrical signals during various processes such as cardiac cy-
cles [47, 155, 229, 237], muscle movements and skin-conductance
measurements [102, 155]. In addition to EMG, ECG and EDA sig-
nals, the physical sciences community has also explored the design
of devices for EEG [126] and EOG [2] measurements.
Electro-chemical sensors are another class of devices that con-
vert information associated with biochemical processes that hap-
pen in the body. They can also be used for detecting viruses and
pathogens in the body [209]. A wide range of electro-chemical Epi-
dermal Devices have been developed which measure blood glucose
levels [108], hemoglobin [110] or characterize sweat [9, 33] with
various compounds such as pH levels [39] or trace metals [109].

5.1.4  Environmental Sensing. The interaction of the human body
with external environmental signals can be a good indicator of
health. These environmental factors include exposure to UV light,
pollutants, and gases which can be hazardous.

Prior research has contributed Epidermal Devices for sensing
various environmental elements such as UV exposure [51, 139, 210],
harmful gases like as nitric oxide [115], humidity levels [211], and
exposure to explosives and gun shot residues [13]. While there has
been extensive research in physical sciences, environmental sensing
so far has received very limited attention in HCI, with pioneering
work investigating the fabrication of chemical UV sensors [139].

5.2 Output

5.2.1 Visual Displays. Visual displays on the skin can serve mul-
tiple purposes. Firstly they can provide subtle notifications to the
user [97, 232]; second, they can be embedded with tattoo art to add
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further aesthetic value to the devices [133]; third, in a medical con-
text, they can be utilized for healing wounds on the skin [83]. Prior
work on epidermal displays from the physical sciences includes
a high-resolution display matrix made of LEDs [49, 71], electro-
luminescent displays [105, 257], stretchable organic LEDs [83, 84],
thermochromic [106], and electrochromic displays [35, 164]. Re-
search in HCI built onto some of these findings to focus on more
accessible fabrication approaches in a simple lab or DIY settings.
Approaches comprise the fabrication of Epidermal Devices that
consist of SMD LEDs [133], stretchable electro-luminescent dis-
plays [232, 233] and thermochromic displays [97, 227].

5.2.2  Actuation. Stretchable epidermal actuators attached closely
to human skin can act as devices that produce haptic output on the
body through targeted stimulations. A large number of epidermal
haptic output devices have been presented across research com-
munities. Various technologies have been successfully employed.
The approach that allows for the most minimal form factor uses
electro-tactile stimulation. Two or more electrodes in direct contact
with the skin deliver a controlled electrical pulse to directly stimu-
late nerve stems of mechanoreceptors, which can be perceived as
vibrations. These types of actuators have been extensively explored
both in the physical sciences [191] and HCI research communi-
ties [100, 234]. Various other approaches have been explored for
creating haptic sensations based on mechanical movement. These
include the use of dielectric elastomers [202, 249], magnetic actua-
tion [143, 252], piezoelectric actuation [258], mechanical actuation
with shape memory alloys [31, 64] and actuation through microflu-
idic channels [65, 66]. A key observation here is that both the HCI
community and physical sciences research community are very
active in designing actuator devices, with competitive results. How-
ever, the communities complement each other in the evaluation
approaches: the HCI community’s focus on psychophysical stud-
ies to validate the actuation principle and corresponding human
perception can go hand-in-hand with the materials and fabrication-
centered evaluations that are typically performed in the physical
sciences research community.

5.2.3 Drug Delivery. Drug delivery devices are another class of
output devices that non-invasively and transcutaneously inject
drugs. This is achieved through multiple approaches including the
use of microneedles [123], electrical methods [236], ultrasound
methods [194] and thermal ablation [7]. A more detailed discussion
of various types of drug delivery mechanisms (not all are compatible
with Epidermal Devices) can be found in [172].

5.3 Computation and Communication

In addition to means for input and output, prior research has also
investigated components that are central for on-device computation
and communication.

5.3.1 Electronic Components and Fully Integrated Devices. Elec-
tronic components such as transistors, memory devices that are
building blocks of computing. Prior literature in physical science
research community has developed fully printed capacitors [6],
transistors [160], dense transistors arrays [40, 225], memory and
logic devices [193]. In addition to these components, the design
and fabrication of fully-integrated devices is a very active research
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topic [50, 122, 184]. Self-contained devices are also being actively
pursued in the HCI community [140, 152], with even computational
capability for running on-device neural network models being im-
bued into devices via off-the-shelf FPGAs [8].

5.3.2  Communication Components. Often Epidermal Devices are
coupled with wireless communication modules to send data to a
remote computer or a mobile device for further processing. These
strategies typically involve using on-device antennas for wireless
communication [104]. Epidermal devices with wireless transmission
capabilities have been developed for power transfer [79], near-field
communication [97, 107], radio frequency communication [185]
and wireless bluetooth communication [77].

5.4 Energy Harvesting

While extensive efforts have been devoted to the development of
wearable health and fitness monitoring systems, limited efforts
have focused on developing body-worn energy harvesting and
energy storage for powering these sensing systems. Most of the
work on energy harvesting devices has been contributed in the
physical sciences research community by using electro-chemical
approaches [12]. Pioneering work from HCI has been using com-
mercial supercapacitors for energy harvesting [77].

Triboelectric generators (commonly termed as TENGs) are one
of the most commonly used techniques and utilize the principles of
tribocharging to harvest mechanical energy and convert it into elec-
tricity in a simple and low-cost manner [38, 46]. Energy harvesting
through triboelectric generators has also received attention in the
HCI community recently. They have been used for powering paper-
based interfaces [28], microphones and acoustic sensing [5] and
for interactive cords and textiles [53, 189]. Moreover, biofuel cells
(BFCs) have been explored in the physical sciences research commu-
nity. These are devices that convert chemical energy into electricity
through biocatalytic reaction. They are a promising source for gen-
erating sustainable electrical energy [12, 61, 255]. Epidermal BFCs
have been successfully deployed to harvest energy from human
sweat [11, 14, 88, 199]. Finally, thin-film alkaline batteries [259]
that use water-based electrolytes can be used for powering on-skin
electronics [16, 120].

5.5 Opportunities and Challenges

5.5.1 Pressure, Shear and Deformation Input. While touch contact
sensing on Epidermal Devices has been intensely studied in the HCI
community [97, 133, 157, 230], there is yet very little investigation
of interaction using variations of pressure, shear and deformation.
These promise to further enhance the interaction vocabulary by
directly building on the softness of human skin. In particular, high-
resolution sensing matrices should be investigated alongside the
versatile gestures and interactions they enable on diverse body
locations. This could be achieved by building onto research from
material and physical sciences, and use piezo-resistive materials
which have a good response to pressure [182], or employ capac-
itive approaches with soft dielectric materials, which provide a
unique capacitive signature when normal or shear force is applied.
Dense microfluidic channels and ionotronic sensing [262] is another
promising alternative.
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5.5.2  Output with Visual Displays and Haptic Displays. Further im-
proving the quality of visual displays within interactive Epidermal
Devices will be an important next step, to move past the limited
quality and resolution of thermochromic or electroluminescent
displays.

Printed e-ink displays and OLEDs are powerful display technolo-
gies that should be explored for Epidermal Devices. E-ink displays
have been explored for wearable devices [44]; however, a key chal-
lenge is the realization of e-ink displays in skin-conformal form
factors, and ideally in a simple lab environment.

Important next steps for epidermal tactile output displays com-
prises increasing their spatial resolution and scale. Integrating mul-
tiple forms of haptic output, for instance, pressure, skin stretch, and
thermal output, in one Epidermal Device is another very promising
direction, as this directly corresponds to the multi-sensory nature
of human skin. Electric muscle stimulation has been widely for
providing kinesthetic feedback [99]. However, the vast majority
of this work uses either commercial gel-electrodes or textile elec-
trodes [114]. An opportunity for more ergonomically wearable
systems is to use Epidermal Devices that encapsulate dry electrodes
for EMS output.

5.5.3 Bio-Signals and Electro-Chemical Sensing. Integrating physi-
ological sensing to a greater extent opens up interesting directions
for research in HCI, which so far has been mostly concerned with
user input and system feedback. For instance, deploying electro-
physiological sensors that capture multiple bio-signals (e.g., EEG,
ECG, EEG, EOG, EDA) at various body locations can open up op-
portunities for diverse applications such as continuous activity
tracking, gestural interaction, or health monitoring.

Moreover, we identified that the HCI community so far is not
using electro-chemical sensing for capturing rich bio-signal data
about the electrolyte and metabolite concentrations in the body.
For instance, these comprise measuring blood glucose levels or
lactate levels in sweat, which are indicators of physical activity.
This poses the challenges not only of identifying the appropriate
materials for sensing and sensor designs, but also identifying safe
and easy-to-perform techniques for rapid prototyping that allow
for encapsulating chemicals in the Epidermal Devices.

5.5.4 Energy Harvesting and Self-Powered Devices. Prior work in
materials and physical sciences research has shown that energy
can be harvested successfully for powering Epidermal Devices. Al-
though fully untethered devices have been contributed in HCI [101,
140], self-powered devices that can harvest energy through bio-
mechanical and physical processes are a natural and important
next step for investigation. For instance, this might be achieved
through triboelectric generators, which have received attention
due to their easy and rapid fabrication [5] and their applicability
in self-powered haptic displays [191]. However, designing devices
that integrate sensing, display, and energy harvesting capabilities,
all in an ultra-thin form factor, is a challenge. Computational design
and optimization techniques have strong potential in helping to
solve this challenge, finding optimal multi-modal device designs
which have been successfully demonstrated in the HCI community
can solve these challenges by taking user inputs and constraints
for each of the modalities and finding an optimal design.
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5.5.5 Connections and Tethering. Connectors and tethering the
device remain a challenge, mainly because the slim and stretchable
devices are not well compatible with conventional cables, jumper
wires, or copper tape. This is a common problem and the most
widely used approaches have been to use copper tape [232], con-
ductive z-axis tape to connect the device to an external flexible
copper-clad laminated onto a silicone [140] or to a flexible printed
cable [157, 234]. The latter two approaches enable easy connec-
tion of highly dense connector lines and offer flexibility, but future
research should investigate the fabrication of highly stretchable
connectors while supporting a large number of I/O pins. Similarly,
it remains an open challenge to robustly tether multiple Epidermal
Devices that are located at different body sites.

6 EVALUATION METHODS AND STRATEGIES

In all disciplines, empirical studies are conducted to better under-
stand the performance and characteristics of Epidermal Devices.
Yet, the research questions, methods, and study designs strongly
differ across disciplines. In this section, we will review what are
common evaluation methods and will contrast the typical methods
and strategies used in HCI with those employed in other disciplines.

6.1 Technical Evaluations

Technical evaluations typically include experiments designed to
understand the functionality of the device, its mechanical charac-
teristics, and material behavior.

6.1.1 Evaluating Device Functionality. For input devices involving
tactile sensing and physiological sensing, typical measurements rep-
resenting the quality of signal acquisition include measuring signal-
to-noise levels [47, 155, 230] and resolution of sensing [157, 232].
For displays, these involve optical characterization [83]. In the case
of actuators, these measurements typically include psychophysical
studies to understand the stimulation thresholds and just-noticeable
differences(JNDs). Recent work has also been using psychophysical
methods to characterize the feel-through characteristics, a key prop-
erty of Epidermal Devices [65, 156, 234]. In most cases, the methods
for measuring device functionality have been similar across the
HCI community and physical sciences research.

6.1.2  Microscopic Analysis. Microscopic analyses usually involve
SEM (Scanning Electron Microscope) scans of the device to accu-
rately measure the device thickness [241, 247]. These evaluations
also show the quality of deposited functional traces and layers in
the device. Microscopic analyses are less common in the HCI litera-
ture, with only a few works reporting them [133, 232]. Microscopic
analyses should be more commonly adopted in HCI work since
they can provide insights into various aspects of real-world usage,
such as the initial quality of functional layers and for measuring
the degradation of the material after continued use.

6.2 Empirical Studies and User Experiments

The HCI community has made fundamental contributions to un-
derstanding the use of the human body for interaction. Most of
the empirical research and controlled experiments with users are
centered around three themes: (a) User Strategies and mappings,
(b) elicitation Studies, and (c) social acceptability studies.
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6.2.1 User Strategies and Mappings. Understanding on-body inter-
action is an active research topic in HCI. Several empirical studies
focused on the body-centric interaction space [68, 218], identified
user strategies for creating on-body gestures [159] and revealed that
on-skin input increased the sense of agency [19]. Moreover, previ-
ous research has investigated mapping strategies for input elements
on the skin. These include salient features on the palm [43, 60, 220],
targets placed on the forearm [130], visual and tactile anatomi-
cal landmarks [18, 232] as well as mappings between skin and an
off-skin display [20].

6.2.2  Elicitation Studies. Several elicitation studies have been con-
ducted to understand gestural interaction on specific body locations
such as ears [29], fingers [25, 190], forearm [22, 231], nose [176],
belly [217], head and shoulders [214]. In addition to gestural in-
put on body locations, elicitation studies have also been reported
for skin-specific input modalities and user preferences for on-skin
input [22, 231].

6.2.3 Social Acceptability. In recent years, we witness an increas-
ing focus on social acceptability and social perception of body-worn
devices. Social acceptability studies have initially been focused
on wearable devices [117, 118] and interactive textiles [42, 98].
They have investigated how e-textiles might alter the wearer’s
social image and perception by others during everyday activi-
ties [42, 114, 173, 208]. More recent work has started to specifically
investigate on-skin interfaces, in order to understand the social
perception of using such interfaces in public [77, 250, 251]. Work
has also studied gestures performed on the body [158, 174], on
epidermal interfaces [251] or directly on skin [231] and evaluated
appropriate body locations for on-body computing [250, 251, 254].

6.3 Opportunities and Challenges

Most of the empirical work can be categorized into the following
classes: Elicitation studies, social acceptability studies. However,
very few of these studies actually involve epidermal devices.

6.3.1 Understanding Skin-Specific Interactions. Current mobile and
wearable devices have matured because of numerous studies and
interaction techniques that have been designed and evaluated for
enabling seamless interaction [73]. Similar studies need to be de-
signed and conducted for Epidermal Devices. Skin affords wide
variety of rich interactions such as pulling, pushing, squeezing
etc [231]. While first technologies enable such interactions, the in-
teraction granularity of skin-specific interactions is still unknown,
e.g. what is the comfortable range and resolution with which we can
perform a skin pinch gesture. Similar studies have been conducted
with e-textiles [63, 98], however these studies do not translate to
skin-specific interactions. Studying these questions is further com-
plicated by the strong influence of skin location, body posture, a
user’s individual body anatomy, and mobility condition. The current
state-of-the-art Epidermal Devices offer a viable technical platform
for designing and conducting such interaction-specific studies.

6.3.2  Performance Studies. To gain further understanding of Epi-
dermal Devices we need to move on to conducting studies that rig-
orously investigate interaction performance on Epidermal Devices.
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Preliminary investigations have investigated how the material stiff-
ness of Epidermal Devices affects tactile perception [156]. Similarly,
identifying the appropriate, additional physical and mechanical
properties of the devices such as surface friction and roughness
to maximize input performance need to be investigated. In addi-
tion, advanced simulation studies, e.g., using biomechanical models,
and FEM analysis of skin and Epidermal Devices would inform the
community and designers about optimal physical and mechanical
parameters to increase performance and ergonomics.

6.3.3  Durability and In-the-wild Studies. Typically, Epidermal De-
vices in HCI have been evaluated with a rather low number of partic-
ipants and during short durations of use, most often in a lab setting.
Testing and evaluating device functionality over multiple weeks is
the major next. Preliminary investigations in this regard have been
reported in physical sciences research [47, 83, 107, 247]. In-the-wild
studies and field deployments help us in identifying technical issues
with respect to power consumption, strong skin-conformal contact,
and clean signal acquisition, but also in uncovering patterns of use
in real-world contexts.

6.3.4  Social Acceptability Studies. Identifying what factors of Epi-
dermal Devices increase or decrease social acceptability will provide
important insights allowing to design the next generation of devices
that bring Epidermal Computing one step closer to mass adoption.
While body locations are well researched [45, 80, 254], other design
choices are underexplored. Social cues have been tackled in prior
work [42, 74] but not systematically evaluated. Moreover, questions
related to self-expression and how personalization of devices can
contribute to it [175], but also impression management [52] and
also the effect of a device’s visibility for bystanders need to be stud-
ied [94]. Applying and comparing design strategies for increasing
social acceptability that has been presented by Koelle et al. [116] to
the field of Epidermal Devices will be another important step for
future work on social acceptability.

7 APPLICATIONS AND REAL-WORLD
DEPLOYMENTS

Due to their unique form factor, intimate integration with the user’s
body, and low cost, Epidermal Devices open up a range of opportu-
nities for applications and real-world deployments. These span a
wide range of areas, ranging from general mobile computing and
communication to supporting a user’s bodily activities in sports
and fitness, and ranging from health monitoring and diagnosis for
the masses to more specialized areas such as assistive technolo-
gies. Exemplary application scenarios are one area where the HCI
research community trumps over the physical sciences research
community.

7.1 Health Monitoring and Diagnosis

A key advantage of Epidermal Devices is that, since they are directly
present on the body, they have direct access to the biophysical and
biochemical features of the body. Using these devices to continu-
ously monitor bio-signals promises to reduce diagnostic hospital
visits and can also facilitate early diagnosis and prevention of ill-
nesses. Epidermal Devices have been deployed for non-invasive
drug delivery [7, 123, 194, 221] and wound healing [83, 84, 236].
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This application area provides an exciting opportunity, with first
interactive physiological devices already being developed in the
HCI community [140, 155].

7.2 Assistive Technologies

Assistive technologies and accessibility are key application areas
where Epidermal Devices can be deployed for creating societal
impact. Studies have demonstrated the benefits of body-based inter-
action for eyes-free and accessible interaction [60, 159]. Wearable
accessories have already been developed in the HCI community
for accessible computing on the go [192]. Furthermore, epidermal
exoskeletons promise support for applications such as assisting the
physically disabled [95] or restoring the ability to pinch and grasp
objects after having suffered a spinal cord injury [93].

7.3 Sports and Fitness

Epidermal Devices offer new integrated platforms for continuous
monitoring of both biophysical and biochemical signals, which can
be of interest in sports analytics and fitness monitoring. Prior work
includes strain sensors that can detect human motion [239] and
precise body movements during athletic training [256]. Further-
more, traditional electronic components such as accelerometers
and strain gauges can be encapsulated within stretchable casings
and shells to realize devices that are more mechanically robust
and can be deployed for monitoring during a workout [121]. In
addition to motion sensing, other physiological parameters such as
EMG [241], ECG [125], temperature [212], respiration, and electro-
chemical signals such as glucose and sweat composition [12] are
essential for evaluating an individual’s overall physiological state
and are thus topics of intense academic interest in sports science
and performance.

Epidermal Devices from the HCI community have also demon-
strated body motion sensing [140, 155]. However, these are typically
limited to a single body location or movement.

7.4 Affective Communication

The multisensory nature of human touch makes Epidermal De-
vices a promising choice for enhancing affective communication
between people over the distance. Propositions from prior research
include remote communication with a partner using on-skin multi-
touch gestures [155, 157] or sending affective haptic signals to a
remote user [252]. Sharing of biosignals as a means for intimate
communication between users [131] is another promising direction.

7.5 Mobile Computing

A vastly explored application area for Epidermal Devices in HCI is
mobile computing. Epidermal Devices have been used for designing
novel techniques that enable interaction in demanding mobility
conditions. This includes mobile on-body text entry [230, 238],
eyes-free microgestures control [101], smart control of IoT de-
vices [112, 157], physical interaction with mobile devices [65], dis-
play of subtle notifications [97, 133, 232, 234], and gestures that
can be performed when hands are busy holding objects [157]. In
addition to supporting interaction in mobile scenarios, Epidermal
Devices have also been deployed in the context of other interactive
applications such as in AR/VR [234, 252].
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7.6 Opportunities and Challenges

We identify a few compelling application domains where deploying
Epidermal Devices can not only reveal new insights but also can
have a long-term societal impact. Epidermal devices present strong
opportunities in several domains, where deploying Epidermal De-
vices can not only reveal new insights for future generations of
devices but also can have a long-term societal impact.

7.6.1 Assistive Technologies. The fields of assistive and accessi-
ble computing provide opportunities for further expanding the
deployment of Epidermal Devices. For instance, epidermal haptic
devices can be used for providing braille output through subtle
localized vibrations. In this respect, empirical investigations aiming
at understanding the specific needs and preferences of the target
population (visually impaired, deaf and hard of hearing, or users
with motor impairments) with respect to Epidermal Devices can
uncover rich design guidelines. Additionally, exoskeletons are an
active research area covering multiple disciplines; the development
of epidermal exoskeletons that are skin-conformal and stretchable
can open up opportunities for novel assistive technologies in areas
such as prosthetic control, neuromotor training, and rehabilitation.

7.6.2  Health Monitoring and Diagnosis. Health monitoring and
diagnosis is an application area that is promising and has a large
potential for large-scale deployment of Epidermal Devices. When
manufactured on large scale, Epidermal devices can be very cost-
effective and serve as useful tools for non-invasive measurement
of health parameters. For example, recent research has successfully
used Epidermal Devices for non-invasive COVID-19 testing [209].
We identify multiple opportunities for the HCI community to ad-
vance the state-of-the-art with respect to health monitoring: (1)
using computational approaches for placement of devices and opti-
mizing device designs to incorporate multiple sensing modalities,
possibly even for individual users, (2) advanced signal process-
ing and recognition algorithms for deployment in the wild and (3)
machine learning techniques to continuously understand user’s
health from noisy or sparse sensor data. We anticipate that coupling
the powerful physical capabilities of Epidermal Devices with the
strengths of software-centered data processing will significantly
enhance the quality and availability of data for long-term health
monitoring and open up previously unseen opportunities for medi-
cal diagnosis.

7.6.3  Sports, Fitness, and Rehabilitation. Sports, fitness, and reha-
bilitation can serve as promising avenues for deploying Epidermal
Devices. Research in rehabilitation studies has shown initial deploy-
ments of Epidermal Devices[163] for tracking precise body move-
ments. Higher resolution and denser sensing patches, including full-
body suits, should be developed for enabling detailed whole-body
activity tracking, which can have applications in sports, fitness,
and rehabilitation studies. Another area that has received limited
attention in the field deployment of Epidermal Devices for athletic
and sporting activities.

7.6.4  Human-Robot Interaction. Human-robot interaction is an ac-
tive research area across multiple disciplines. We identify two major
opportunities where Epidermal Devices can enhance human-robot
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interaction : (1) Imbuing the robot with human-like sensor capa-
bilities: this involves designing Epidermal Devices for deployment
on a robot that can capture a wide range of expressive interac-
tions similar to the perceptual abilities of human skin, as well as
devices that imitate the soft material properties of human skin to
enhance human-to-robot touch contact [205]. (2) Enhancing control
of robots through Epidermal Devices: controlling and manipulating
robots is a complex task and this becomes even more challenging
for a swarm of robots. Using skin-based interactions is a promising
solution because of the human natural proprioceptive capabilities
and dexterity. Preliminary work on controlling a drone through
Epidermal Devices has already been reported [2].

7.6.5 Mobile Computing. Prior work in HCI has contributed many
approaches for enriching and improving the user interaction with
existing mobile and wearable devices. These explorations provide a
good foundation and important lessons learned for moving to the
next phase of transitioning from prototypes to commercial products.
A first step in this direction is to blend these Epidermal Interfaces
with existing wearable devices, for instance, soft interactive watch
straps for smartwatches or as beauty accessories. Key challenges
for such deployment range from identifying compelling interaction-
specific use cases (e.g., eyes-free entry, inconspicuous interaction,
subtle notifications without the user having to look at his mobile
device or watch) to more social and personal challenges such as
the aesthetic customization of the devices.

7.6.6  Ethics, Security, and Privacy. The intimate coupling of Epi-
dermal Devices with the body opens up new concerns for security,
privacy, and ethics. Firstly, epidermal Devices can capture highly
privacy-critical biological data about a user’s body and health status.
Currently, no security or privacy-based features are incorporated
into device designs. In contrast to mobile devices which rely on
security measures such as fingerprint authentication, patterns, pins,
or passwords, the body provides a more sophisticated means for
authentication. Biological signatures such as bio-signals and bio-
impedance [37, 127] can be used for authentication and adding
another layer of security for Epidermal Devices. Additionally, since
Epidermal Devices are present on the body, they are already in the
private space of the user, which adds another level of privacy.
Secondly, the body-based output capabilities of Epidermal De-
vices open up new threats and ethical questions. For instance, who
should be allowed to alert the user with haptic messages, and on
what body locations? Under what circumstances is it legitimate to
influence the user’s mood through scents that are automatically
disposed from Epidermal Devices? How can one avoid a hacker
is getting access to an Epidermal Device that through electrical
muscle stimulation can control the sensorimotor functions of the
victim? While Epidermal Computing promises an exciting future,
it is crucial to identify and counter these threats and potential dark
patterns [54, 55] where users are deceived by this technology.

8 CONCLUSION

Across disciplines, there has been a rapid growth of Epidermal
Devices in the last few years, embracing new technological devel-
opments and deployed in multiple domains, leading to the develop-
ment of a new era of Epidermal Computing. Despite being a highly
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multi-disciplinary area, the field is beginning to close in on common
areas, encircling new materials and fabrication, new device types,
theoretical and empirical foundations, and application domains.

The golden opportunities taken together across all of these
themes include: (1) Exploring sustainable materials and robust ultra-
thin stretchable conductors. (2) Integrating computational design
practices into the current fabrication workflows. (3) Fabricating
for large-area devices which involves solving challenges in fabrica-
tion, encapsulation methods for interconnects, and the ability to
withstand high levels of mechanical stress. (4) Extending the input
and output capabilities in sensing touch, pressure and providing
high-resolution visual and haptic output. In addition to sensing
bio-signals, the HCI community can also explore techniques for
energy harvesting and connections/tethering approaches. (5) From
an empirical research perspective, pressing next steps to include in-
the-wild studies, social acceptability studies, and studies measuring
the interaction performance. (6) Finally, exploring promising appli-
cation areas in assistive technology, health monitoring, and fitness,
human-robot interaction, and mobile computing can unearth the
vast potential of epidermal devices for widespread use.

Our analysis builds on our own practical experiences and on
an in-depth analysis of the literature that exists across multiple
disciplines and research communities. This cross-disciplinary angle
brings a unique perspective and helps in identifying the overar-
ching scientific goals that transcend the boundaries of a single
research community. We, therefore, believe that the challenges
and opportunities presented in this paper will resonate with sci-
entists and researchers from disciplines inside and beyond HCI,
leading to coordinated efforts across disciplines. We hope that en-
gineers, practitioners, and industry experts will recognize them
for the successful commercialization of the devices. We also invite
new researchers and practitioners entering the area of Epidermal
Computing to use this article to identify and work on unsolved
challenges and research problems.

In summary, we are excited about the potential of Epidermal
Computing and how it transforms the way we may interact with
future computing devices in ways that naturally blend in with our
human bodies. With the synthesis and articulation of challenges
and opportunities, we hope this work will motivate further research
efforts in this emerging research area and support the reader in
contributing to the future of Epidermal Computing.
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